skbio.metadata.
IntervalMetadata
(upper_bound, copy_from=None)[source]¶Stores the interval features.
IntervalMetadata
object allows storage, modification, and
querying of interval features covering a region of a single coordinate
system. For instance, this can be used to store functional annotations
about genes across a genome. This object is also applied to the sequence
alignment.
This object is typically coupled with another object, such as a
Sequence
object (or its child class), or a TabularMSA
object.
Parameters: |
|
---|
Notes
This class stores coordinates of all feature bounds into a interval tree. It allows the speed up of query-by-bound. The building of interval tree is deferred until necessary to save computation. It is updated from all coordinates only when you need to fetch info from the interval tree.
When you add a method into this class and if you method need to fetch
info from IntervalMetadata._interval_tree
, you should decorate it with
_rebuild_tree
. This decorator will check if the current interval tree
is stale and will update it if so. Additionally, if your method add,
delete, or changes the coordinates of any interval features, you should
set self._is_stale_tree
to True
at the end of your method to
indicate the interval tree becomes stale.
See also
Examples
Let’s say we have a sequence of length 10 and want to add annotation
to it. Create an IntervalMetadata
object:
>>> from skbio.metadata import Interval, IntervalMetadata
>>> im = IntervalMetadata(10)
Let’s add annotations of 3 genes:
>>> im.add(bounds=[(3, 9)],
... metadata={'gene': 'sagB'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(3, 9)], fuzzy=[(False, False)], metadata={'gene': 'sagB'})
>>> im.add(bounds=[(3, 7)],
... metadata={'gene': 'sagC'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(3, 7)], fuzzy=[(False, False)], metadata={'gene': 'sagC'})
>>> im.add(bounds=[(1, 2), (4, 7)],
... metadata={'gene': 'sagA'}) # doctest: +ELLIPSIS
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
Show the object representation:
>>> im # doctest: +ELLIPSIS
3 interval features
-------------------
Interval(interval_metadata=..., bounds=[(3, 9)], fuzzy=[(False, False)], metadata={'gene': 'sagB'})
Interval(interval_metadata=..., bounds=[(3, 7)], fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
We can sort the genes by their bounds:
>>> im.sort()
>>> im # doctest: +ELLIPSIS
3 interval features
-------------------
Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})
Interval(interval_metadata=..., bounds=[(3, 7)], fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(3, 9)], fuzzy=[(False, False)], metadata={'gene': 'sagB'})
Query the genes by bound and/or metadata:
>>> intvls = im.query([(1, 2)], metadata={'gene': 'foo'})
>>> list(intvls)
[]
>>> intvls = im.query([(7, 9)])
>>> list(intvls) # doctest: +ELLIPSIS
[Interval(interval_metadata=..., bounds=[(3, 9)], fuzzy=[(False, False)], metadata={'gene': 'sagB'})]
>>> intvls = im.query(metadata={'gene': 'sagA'})
>>> intvls = list(intvls)
>>> intvls # doctest: +ELLIPSIS
[Interval(interval_metadata=..., bounds=[(1, 2), (4, 7)], fuzzy=[(False, False), (False, False)], metadata={'gene': 'sagA'})]
Drop the gene(s) we get from query:
>>> im.drop(intvls)
>>> im.sort()
>>> im # doctest: +ELLIPSIS
2 interval features
-------------------
Interval(interval_metadata=..., bounds=[(3, 7)], fuzzy=[(False, False)], metadata={'gene': 'sagC'})
Interval(interval_metadata=..., bounds=[(3, 9)], fuzzy=[(False, False)], metadata={'gene': 'sagB'})
Attributes
default_write_format |
|
lower_bound |
The inclusive lower bound of interval features. |
num_interval_features |
The total number of interval features. |
upper_bound |
The exclusive upper bound of interval features. |
Built-ins
copy.copy(im) |
Return a shallow copy. |
copy.deepcopy(im) |
Return a deep copy. |
im1 == im2 |
Test if this object is equal to another. |
__init_subclass__ |
This method is called when a class is subclassed. |
im1 != im2 |
Test if this object is not equal to another. |
Methods
add (bounds[, fuzzy, metadata]) |
Create and add an Interval to this IntervalMetadata . |
concat (interval_metadata) |
Concatenate an iterable of IntervalMetadata objects. |
drop (intervals[, negate]) |
Drops Interval objects. |
merge (other) |
Merge the interval features of another IntervalMetadata object. |
query ([bounds, metadata]) |
Yield Interval object with the bounds and attributes. |
read (file[, format]) |
Create a new IntervalMetadata instance from a file. |
sort ([ascending]) |
Sort interval features by their coordinates. |
write (file[, format]) |
Write an instance of IntervalMetadata to a file. |